

Cost and Scheduling of Magnet Fabrication (WBS 2.1)

Deepak Chichili

- Organization
- Construction Cost
 - Quadrupoles
 - > HTS Leads
 - Corrector Magnets
 - > Spool Assembly
 - > MTF Test Stand
- Overall Schedule
- Key Milestones
- Critical Path Analysis
- Risk Analysis
- Summary

Basis of Estimate – Quadrupoles

- ➤ Superconductor: ~ 0.8 M\$ (based on quotation from Oxford dated December 2003)
- ➤ Collar Steel: ~ 0.1 M\$ (based on quotation dated December 2003)
- > Rest of the components scaled based on LHC experience
 - A more detailed break-down of procurement costs is currently being developed
- ➤ Labor from LHC production experience

Basis of Estimate – HTS Leads

- ➤ Assume current design, operating at present rating. Require 22 pairs including 9 spares and one for TeV bus
- Estimate based on HTS leads procured from ASC; P.O. # 517360 dated May 2000.
- ➤ Vendor visits have begun to gauge their interest and to get a better cost estimate
- ➤ Uncertainty in the number of leads could drive the cost down by a factor of 2

Basis of Estimate – Corrector Magnets

- Cos n(theta) is the baseline design. Require 28 corrector packages including 12 spares
- ➤ Basis of estimate is CERN corrector magnets which are fabricated in European industry
- ➤ Communication with other labs (BNL, IHEP, & CAT) have begun to outsource corrector fabrication and test
- ➤ Biggest uncertainty in cost

■ Basis of Estimate – Spool Assembly

- Fermilab design; fabricated and assembled in industry and tested in Fermilab
- ➤ Basis of estimate is LHC DFBX experience
- ➤ Require 15 spools including 5 spares
- ➤ At least one vendor capable and showing interest

MTF Test Stand

- Dedicated Tevatron / BTeV Stand to test different Quads and Spools
- ➤ Basis of Estimate is LHC experience
 - Stand design updated for BTeV requirements
 - Design and commissioning time included
 - Conventional Power leads
 - Modest instrumentation

WBS	SubProject	FY05		FY06		FY07		FY08		FY09		Base Total	
		M&S	Labor	M&S	Labor								
2.1.1.1	Cold Mass Design and Procurement	1404	463	847	403	0	0	0	0	0	0	2251	866
2.1.1.2	Crostat Design and Procurement	355	492	346	282	0	0	0	0	0	0	701	774
2.1.1.3	MTF Test Stand	76	260	283	335	0	187	0	0	0	0	359	782
2.1.1.4	Q1 through Q5 Fabrication & Test	0	0	0	397	52	1342	53	1334	12	268	117	3341
2.1.2.1	HTS Leads	447	27	398	36	119	95	0	0	0	0	964	158
2.1.2.2	Corrector Magnets	353	127	353	65	0	41	0	35	0		706	268
2.1.2.3	Spool Assembly	0	516	2625	358	611	242	27	373	13	194	3276	1683
2.1.3	Project Management	0	179	0	184	0	180	0	180	0	114	0	837
TOTAL		2635	2064	4852	2060	782	2087	80	1922	25	576	8374	8709

Total Base Cost (incl. G&A) = 17,083 k\$ Cost with Contingency = 23,776 k\$

Costs are in FY05 \$
Almost all activities have 40% contingency

Schedule

WBS 2.1

Activity ID	Activity Description	Original Duration	Early Start	EarlyFinish	FY04	FY05	FY06	FY07	FY08	FY09
	New magnet fabrication and test	1347d	02Feb04	01Jun09	1					
1.1	LHC-type Quadrupoles	1260d	02Feb04	28Jan09	1.1					
1.1.1	COLD MASS	651d	02Feb04	23Aug06	1.1					藁
1.1.1.1	Cold Mass Component Design	480d	02Feb04	23Dec05	1.1			·		 ,
1.1.1.2	Cold Mass Tooling Design	380d	01Oct04	03Apr06	1.1.1.2		-			
1.1.1.3	Cold Mass Component Procurement	390d	04Oct04	18Apr06	1.1.1.3		-			
1.1.1.4	Cold Mass Tooling Procurement	280d	21 Jul05	23Aug06		1.1.1.4				=
1.1.2	Q1 through Q5 CRYOSTAT	560d	01Mar04	12May06	.1.2					
1.1.3	MTF TEST STAND	771d	02Feb04	15Feb07	1.3			s		二
1.1.4	Q1 through Q5 PRODUCTION	680d	15May06	28Jan09		<u> </u>	1.1.4			
1.1.4.1	174-1	211d	15May06	15Mar07			1.1.4.1			
1.1.4.2	174-2	191d	12Jul06	12Apr07			1.1.4.2			
1.1.4.3	174-3	171d	07Sep06	10May07			1.1.4.3			
1.1.4.4	97-1	151d	02Nov06	08Jun07			1.1.4.4			
1.1.4.5	97-2	120d	03Jan07	21 Jun07			1.1.4			
1.1.4.6	97-3	120d	01Mar07	17Aug07				1.4.6		
1.1.4.7	97-4	120d	26Apr07	15Oct07				1.1.4.7	Ī	
1.1.4.8	97-5	120d	22Jun07	12Dec07				1.1.4.8		
1.1.4.9	97-6	120d	20Aug07	13Feb08				1.1.4.9		
1.1.4.10	75-1	120d	16Oct07	09Apr08				1.1.4.10		
1.1.4.11	75-2	120d	13Dec07	05Jun08				1.1.4.1		
1.1.4.12	75-3	120d	14Feb08	01 Aug08					1.12	
1.1.4.13	54-1	120d	10Apr08	29Sep08					.4.13	
1.1.4.14	54-2	120d	06Jun08	26Nov08					1.1.4.14	_
1.1.4.15	54-3	120d	04Aug08	28Jan09					1.1.4.15	
1.1.4.16	:Production Oversight in ICB	680d	15May06	28Jan09		1	.1.4.16			
1.2	New Spools	1347d	02Feb04	01Jun09	1.2	<u>'</u>				
1.2.1	HTSLEADS	817d	03May04	24Jul07	1.2.1					
1.2.2	CORRECTOR MAGNETS	1122d	01Mar04	05Aug08	.2.2					
1.2.3	SPOOL ASSEMBLY	1347d	02Feb04	01Jun09	2.3					
1.3	Project Management	1341d	02Feb04	21May09	1.3					

Quadrupoles

- ➤ Production plan developed working backwards and including some schedule float before installation...
- > Procurement of Superconductor to start in October 04
- > Coil winding for the first production magnet to start in May 06
- ➤ MTF test stand and Cryostat drive the schedule (in that order)

HTS Leads

- > Production to start in October 05
- ➤ The level of response from potential vendors could drive the schedule

Corrector Magnets

- ➤ Prototype fabrication to start in March 06
- ➤ The working model is to have an outside vendor fabricate and test the magnets
- Currently investigating various options to identify a suitable vendor

Spool Assembly

- ➤ Prototype fabrication to start in May 07
- ➤ Current working model is to design the spool assembly in-house, fabricate them outside and then test in Fermilab
- ➤ Fabrication and test of spool assembly drives the overall schedule of WBS 2.1

Key Milestones

- Request for Proposal (RFP) for Superconductor Oct 04
- Start Quadrupole Fabrication @ Fermilab May 06
- RFP for HTS Leads Jan 05
- RFP for Corrector Magnets April 05
- Start Spool Fabrication @ Outside Vendor May 07
- Finish Quadrupole Fabrication & Test Feb 09
- Finish Spool Assembly Fabrication & Test May 09

Spool Assembly

- The completion of the C0 IR subproject is dictated by the spool assembly fabrication and test
- ➤ Design of spool assembly is in the critical path followed by the delivery of corrector magnets

MTF Test Stand

➤ Needed for the first quadrupole test. Could drive the quadrupole fabrication and test schedule

Superconductor

> Long lead item

Risks

- > Superconductor Procurement
 - Long lead item
- > HTS Leads
 - Vendor interest needs to be explored
- **Corrector Magnets**
 - Vendors not yet identified
 - Cost
- > Spool Assembly
 - · Vendors not yet identified
 - Cost

Mitigation

- > RFP for superconductor will be sent out in October 04
- ➤ Meetings with potential vendors and CERN personnel have begun
- > Letters of interest have been sent out to various Labs
 - Vendor visits will soon follow
- Enough resources are currently allocated to speedup the design process in an effort to get a budgetary cost estimate from a potential vendor

- A cost estimate based on the design report has been presented
 - ➤ Total Base Cost including G&A = 17,083 k\$ in FY05 \$
- Cost and Schedule has been loaded into OpenPlan
- Most of the WBS Dictionary elements and Basis of Estimate have been completed
- A bottoms-up contingency analysis needs to be completed
- We need to continue technical progress, detail design development and vendor interactions to baseline the cost for CD2